Sunday data/statistics link roundup (12/21/14)

James Stewart, author of the most popular Calculus textbook in the world, passed away. In case you wonder if there is any money in textbooks, he had a $32 million house in Toronto. Maybe I should get out of MOOCs and into textbooks.

  1. This post on medium about a new test for causality is making the rounds.  The authors of the original paper make clear their assumptions make the results basically unrealistic for any real analysis for example:”We simplify the causal discovery problem by assuming no confounding, selection bias and feedback.” The medium article is too bold and as I replied to an economist who tweeted there was a new test that could distinguish causality: “Nope”.
  2. I’m excited that the Rafa + the ASA have started a section on Genomics and Genetics. It is nice to have a place to belong within our community. I hope it can be a place where folks who aren’t into the hype (a lot of those in genomics), but really care about applications, can meet each other and work together.
  3. Great essay by Hanna W. about data, machine learning and fairness. I love this quote: “in order to responsibly articulate and address issues relating to bias, fairness, and inclusion, we need to stop thinking of big data sets as being homogeneous, and instead shift our focus to the many diverse data sets nested within these larger collections.” (via Hilary M.)
  4. Over at Flowing Data they ran down the best data visualizations of the year.
  5. This rant from Dirk E. perfectly encapsulates every annoying thing about the Julia versus R comparisons I see regularly.
  6. We are tantalizingly close to 1 million page views for the year for Simply Stats. Help get us over the edge, share your favorite simply stats article with all your friends using the hashtag #simplystats1e6
 
comments powered by Disqus