I just saw a link to an interesting article by Finale Doshi-Velez and Been Kim titled “Towards A Rigorous Science of Interpretable Machine Learning”. From the abstract:
Unfortunately, there is little consensus on what interpretability in machine learning is and how to evaluate it for benchmarking. Current interpretability evaluation typically falls into two categories. The first evaluates interpretability in the context of an application: if the system is useful in either a practical application or a simplified version of it, then it must be somehow interpretable. The second evaluates interpretability via a quantifiable proxy: a researcher might first claim that some model class—e.g. sparse linear models, rule lists, gradient boosted trees—are interpretable and then present algorithms to optimize within that class.
The paper raises a good point, which is that we don’t really have a definition of “interpretability”. We just know it when we see it. For the most part, there’s been some agreement that parametric models are “more interpretable” than other models, but that’s a relativey fuzzy statement.
I’ve long heard that complex machine learning models that lack any real interpretability are okay because there are many situations where we don’t care “how things work”. When Netflix is recommending my next movie based on my movie history and perhaps other data, the only thing that matters is that the recommendation is something I like. In other words, the user experience defines the value to me. However, in other applications, such as when we’re assessing the relationship between air pollution and lung cancer, a more interpretable model may be required.
I think the dichotomization between these two kinds of scenarios will eventually go away for a few reasons:
Ultimately, I think it’s the success of machine learning that brings the requirement of interpretability on to the scene. Because machine learning has become ubiquitous, we as a society begin to develop expectations for what it is supposed to do. Thus, the value of the machine learning begins to be defined externally. It will no longer be good enough to simply provide a great user experience.